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The quantum partition function at finite temperature requires computing the trace of the imaginary time
propagator. For numerical and Monte Carlo calculations, the propagator is usually split into its kinetic and
potential parts. A higher-order splitting will result in a higher-order convergent algorithm. At imaginary time,
the kinetic energy propagator is usually the diffusion Green’s function. Since diffusion cannot be simulated
backward in time, the splitting must maintain the positivity of all intermediate time steps. However, since the
trace is invariant under similarity transformations of the propagator, one can use this freedom to “correct” the
split propagator to higher order. This use of similarity transforms classically gives rise to symplectic corrector
algorithms. The split propagator is the symplectic kernel and the similarity transformation is the corrector. This
work proves a generalization of the Sheng-Suzuki theorem: no positive time step propagators with only kinetic
and potential operators can be corrected beyond second order. Second-order forward propagators can have
fourth-order traces only with the inclusion of an additional commutator. We give detailed derivations of four
forward correctable second-order propagators and their minimal correctors.
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I. INTRODUCTION

The quantum partition function requires computing the
trace,

Z = Trsrd = Trse−bHd, s1.1d

wherer is imaginary time propagator,b=1/skBTd is the in-
verse temperature, andH=T+V is the usual Hamiltonian op-
erator. Although specific forms of the kinetic and potential
energy operators will not be used in the following, it is use-
ful to keep in mind the many-body case whereT
=s−"2/2mdoi=1¹i

2 andV=oi, jvsr ijd. In numerical or Monte
Carlo calculations, the imaginary time propagator is first dis-
cretized as

e−bsT+Vd = fe«sT+Vdgn, s1.2d

where«=−Db=−b /n, and the short-time propagatore«sT+Vd

is then approximated in various ways. One systematic
method is to decompose, or split, the short-time propagator
into the product form

e«sT+Vd < p
i=1

N

eti«Tevi«V, s1.3d

with coefficientshti ,vij determined by the required order of
accuracy. For quantum statistical calculations, since
kr 8ueti«Tur l~e−sr8− r d2/s2tiDbd is the diffusion kernel, the coeffi-
cient ti must be positive in order for it to be simulated or
integrated. Ifti were negative, the kernel is unbounded and
unnormalizable, and no probabilistic basedsMonte Carlod
simulation is possible. However, as first proved by Sheng
f1g, and later by Suzukif2g, beyond second order, any fac-
torization of the forms1.3d mustcontain some negative co-
efficients in the sethti ,vij. Goldman and Kaperf3g further
proved that any factorization of the forms1.3d must contain
at least one negative coefficient forboth operators. Thus,

despite myriad of factorization schemes of the forms1.3d
proposed in the classical symplectic integrator literature
f4–7g, none can be used for doing quantum statistical calcu-
lations beyond second order. It is only recently that fourth
order, all positive-coefficient factorization schemes have
been foundf8,9g and applied to time-irreversible problems
containing the diffusion kernelf10–14g. In order to bypass
the Sheng-Suzuki’s theorem, one must include other opera-
tors in the factorizations1.3d, such as the double commutator
[V,fT,Vg], wherefA,Bg;AB−BA.

In computing the quantum partition functionZ, only the
trace ofr=e−bH is required. Since the trace is invariant under
the similarity transformation

r̃ = SrS−1, s1.4d

one is free to use any suchr̃ to computeZ. This is immate-
rial if r is known exactly. However, if the short-time propa-
gator is only known approximately, then one may use a
clever choice ofS to further improve the approximation. This
is a well-known idea in many areas of physics. For example,
to calculate the exact quantum many-body ground state using
the diffusion Monte Carlo algorithm, one can chooseS=f0,
wheref0 is a known trial function close to the exact ground
state. This is the idea of “importance sampling” as intro-
duced by Kaloset al. [15]. Its operator formulation as de-
scribed above has been implemented by Chin[16] some time
ago. Similar ideas have been used to improve path integrals,
as detailed by Kleinert[17]. If the short-time propagator is
approximated by the product form(1.3), the error terms can
be calculated explicitly and eliminated byS. When imple-
mented classically, these are known as symplectic “correc-
tor,” or “process” algorithms[18–23]. In this context the
propagatorr is the kernel algorithm andS is the corrector.
SinceSdisappears in the calculation ofZ, there is no restric-
tion on the form ofS. If Swere also expanded in the product
form (1.3), there is no restriction on the sign of its coeffi-
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cients. This suggests that there may exist a product form
(1.3) of r with only positive coefficients such that its trace is
correct to higher order. This would not be precluded by the
existing Sheng-Suzuki theorem.

In this work, we show that this is not possible. Ifr is
approximated by the product form(1.3) with positive coeffi-
cients htij, then r̃ cannot be corrected byS to higher than
second order. The proof of this generalizes the Sheng-Suzuki
theorem. The corrected propagatorr̃ can be fourth order only
if additional operators, such as[V,fT,Vg], are used in the
splitting of r. By understanding the “correctability” require-
ment, we can systematically deduce the four fundamental
correctable second-order propagators and their correctors.

In the following section, we recall some basic results of
similarity transforms. Beyond second order, only a special
class of approximater satisfying the correctability condition
can be corrected to higher order. In Sec. III, we compute the
explicit form of the error coefficients required by the correct-
ability criterion. In Sec. IV, we show that this requirement
cannot be satisfied for propagators of the product form(1.3)
with only positive htij coefficients. In Sec. V, based on our
understanding of the correctability restriction, we deduce all
four second-order correctable propagators and their minimal
correctors. Some conclusions are given in Sec. VI.

II. SIMILARITY TRANSFORMS
AND THE CORRECTABILITY CRITERION

Similarity transforms on approximate propagators of the
product form(1.3) have been studied extensively in the con-
text of symplectic correctors[18–22]. However, not all use
the language of operators and some are specific to celestial
mechanics. Here, we recall some elementary results and es-
tablish the fundamental correctability requirement in the con-
text of quantum statistical physics.

Since

SrS−1 = fSe«sT+VdS−1gn, s2.1d

it is sufficient to study the similarity transformation of the
approximate short-time propagatorrA. Let rA approximates
e«sT+Vd in the product form such that

rA = p
i=1

N

eti«Tevi«V = e«HA, s2.2d

whereHA is the approximate Hamiltonian

HA = T + V + «seTVfT,Vgd + «2seTTV†T,fT,Vg‡

+ eVTV†V,fT,Vg‡d + Os«3d s2.3d

with error coefficientseTV, eTTV, andeVTV determined by fac-
torization coefficientshti ,vij. The transformed propagator is

r̃A = SrAS−1 = Se«HAS−1 = e«sSHAS−1d = e«H̃A, s2.4d

where the last equality defines the transformed approximate

HamiltonianH̃A. If now we take

S= expf«Cg, s2.5d

whereC is the to-be-determined corrector, then we have the
fundamental result

H̃A = e«CHAe−«C

= HA + «fC,HAg +
1

2
«2
†C,fC,HAg‡ +

1

3!
«3fC,†C,fC,HAg‡g

+ ¯ . s2.6d

Let us first consider the case where the product form(2.2)
for HA is left-right symmetric, i.e., eithert1=0 and vi
=vN−i+1, ti+1= tN−i+1 or vN=0 andvi =vN−i, ti = tN−i+1. In this
case, the propagator is reversible,rAs«drAs−«d=1, andHAs«d
is an even function of« with eTV=0. In this case,

H̃A = HA + «fC,HAg + ¯

= T + V + «2seTTV†T,fT,Vg‡ + eVTV†V,fT,Vg‡d

+ «fC,T + Vg + ¯ , s2.7d

and one immediately sees that the choiceC=«C1 with C1
;cTVfT,Vg would eliminate either second order error term
with cTV=eTTV or cTV=eVTV. So, if HA is constructed such
that

eTTV= eVTV, s2.8d

then both can be simultaneously eliminated by the corrector.
This is the fundamental correctability requirement for cor-
recting a second orderrA to fourth order. This observation
can be generalized to higher order. At higher orders,HA will
have error terms of the formfT,Qig andfV,Qig whereQi are
some higher-order commutator generated byT andV. If HA

is of order 2n in «, then H̃A can be of order 2n+2 only if
HA’s error coefficients forfT,Qig and fV,Qig are equal for
all Qi’s. This fundamental corrector insight is often obscured
by the more general case where odd order errors are allowed.

Sheng[1] and Suzuki[2] independently proved that norA
of the form (2.2) can have positive coefficientsti beyond
second order. More precisely, ifrA is of the product form
(2.2) with positive ti’s such thateTV=0, then botheTTV and
eVTV cannot be zero. We will prove a more general theorem
that the product form(2.2) with positive ti’s such thateTV
=0 cannot becorrectedbeyond second order, i.e.,eTTV can
never equal toeVTV. From this perspective, the Sheng-Suzuki
theorem is a special case where the common value for both
coefficients is zero.

In the general case whereeTVÞ0, we have

H̃A = T + V + «seTVfT,Vgd + «2seTTV†T,fT,Vg‡

+ eVTV†V,fT,Vg‡d + «fC,T + Vg + «2eTV†C,fT,Vg‡

+ 1
2«2

†C,fC,T + Vg‡ + Os«3d. s2.9d

SincefcTT+cVV,T+Vg=scT−cVdfT,Vg, the linear term in«
can be eliminated if we chooseC=C0;cTT+cVV such that
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scT − cVd = − eTV. s2.10d

This is the first-order correctability condition. This means
that with a suitable choice ofcT andcV, a first-order propa-
gator can always be corrected to second order. Hence, the
trace of any first-order propagator is always second order.
For example, the trace Trse«Te«Vd is second-order despite its
appearance.

With the first-order correctability condition satisfied, the
remaining commutators in Eq.(2.9) are either[T,fT,Vg] or
[V,fT,Vg], and can again be corrected by adding toC the
term «C1=«cTVfT,Vg. Thus with

C = C0 + «C1 = cTT + cVV + «cTVfT,Vg s2.11d

such thatscT−cVd=−eTV, we have

H̃A = T + V + «2seTTV†T,fT,Vg‡ + eVTV†V,fT,Vg‡d

+ «2fC1,T + Vg + «2eTV†C0,fT,Vg‡

+ 1
2«2

†C0,fC0,T + Vg‡ + Os«3d,

= T + V + «2seTTV− cTV + 1
2cTeTVd†T,fT,Vg‡

+ «2seVTV− cTV + 1
2cVeTVd†V,fT,Vg‡ + Os«3d.

s2.12d

If we now choosecTV=eTTV+ 1
2cTeTV to eliminate the error

term [T,fT,Vg], then the error term[V,fT,Vg] can vanish
only if

eTTV= eVTV+ 1
2seTVd2. s2.13d

This is the general second-order correctability requirement
for correcting any first-order propagator beyond second or-
der. The major result of this work is to show that this con-
dition cannot be satisfied for product decomposition of the
form s2.2d with only positiveti coefficients.

III. DETERMINING THE ERROR COEFFICIENTS

To check whether the correctability requirement, Eq.
(2.13), can ever be satisfied by an approximate propagator of
the product form(2.2), we need to determineeTV, eTTV, and
eVTV in terms ofhti ,vij. From the assumed equality

p
i=1

N

eti«Tevi«V = e«HA, s3.1d

with HA given by Eq.s2.2d, we can expand both sides and
compare terms order by order in powers of«. The left-hand
side of Eq.s3.1d can be expanded as

e«t1Te«v1Ve«t2Te«v2V
¯ e«tNTe«vNV

= 1 +«So
i=1

N

tiDT + «So
i=1

N

viDV + ¯ , s3.2d

and the right-hand side as

e«HA = 1 +«sT + Vd + «2eTVfT,Vg + «3eTTV†T,fT,Vg‡

+ «3eVTV†V,fT,Vg‡ +
1

2
«2sT + Vd2 +

1

2
«3eTVhsT + Vd

3fT,Vg + fT,VgsT + Vdj +
1

3!
«3sT + Vd3 + ¯ . s3.3d

Matching the first-order terms in« gives the primary con-
straints

o
i=1

N

ti = 1 and o
i=1

N

vi = 1. s3.4d

To determine the error coefficients, we “tag” a particular
operator in Eq.s3.3d whose coefficient containseTV, eTTV, or
eVTV and match the same operator’s coefficients in the ex-
pansion of Eq.s3.2d. For example, in the«2 terms of Eq.
s3.3d, the coefficient of the operatorTV is s 1

2 +eTVd. Equating
this to the coefficients ofTV from Eq. s3.2d gives

1

2
+ eTV = o

i=1

N

sivi , s3.5d

where we have introduced the variable

si = o
j=1

i

t j . s3.6d

This way of computingTV from Eq. s3.2d corresponds to
first picking out aV operator from among all thevi terms,
and then combine all theti terms to its left in the exponential
to generate aT operator. Alternatively, the same coefficient
can also be expressed as

1

2
+ eVT = o

i=1

N

tiui , s3.7d

where

ui = o
j=i

N

v j . s3.8d

This way of computingTV corresponds to first picking out a
T operator from among all theti terms, and then combine all
the vi terms to its right in the exponential to generate aV
operator. To demonstrate how these variables are to be used,
we can directly prove the equality of Eqs.s3.5d and s3.7d.
First, note thatsN=1 andu1=1. Second, sinceti =si −si−1, at
i =1 we must consistently sets0=0. Similarly, sincevi =ui
−ui+1, we must setuN+1=0. Therefore we have

o
i=1

N

sivi = o
i=1

N

sisui − ui+1d = o
i=1

N

ssi − si−1dui = o
i=1

N

tiui .

s3.9d

The determination of error coefficients is simplified if we
pick operators whose expansion coefficients are easy to cal-
culate. Matching the coefficients of operatorsTTV andTVV
(note,not the operatorVTV) yields
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1

6
+

1

2
eTV + eTTV=

1

2o
i=1

N

si
2vi =

1

2o
i=1

N

ssi
2 − si−1

2 dui , s3.10d

1

6
+

1

2
eTV − eTVT=

1

2o
i=1

N

tiui
2. s3.11d

IV. PROVING THE MAIN RESULT

Using the expression foreTVT from Eq.(3.11), the correct-
ability requirement(2.13) reads

1

2o
i=1

N

tiui
2 = a, s4.1d

with

a = 1
2s 1

2 + eTVd2 + 1
24 − eTTV s4.2d

andeTV, eTTV given by Eqs.s3.7d ands3.10d, respectively. In
Suzuki’s prooff2g, he recognizes that in terms of the variable
Îtiui, Eq. s4.1d is a hypersphere and Eqs.s3.7d and s3.10d
are hyperplanes. His proof is based on a geometric dem-
onstration that his hyperplane cannot intersect his hyper-
sphere. While this geometric language is very appealing,
it is cumbersome when dealing with more than one hyper-
plane. We will use a different strategy.

If ti are all positive, then the left-hand side of Eq.(4.1) is
a positive-definite quadratic form inui. There would be no
real solutions forui if the minimum of the quadratic form is
greater thana. Our strategy is therefore to minimize the qua-
dratic form subject to constraints(3.7) and (3.10),

o
i=1

N

tiui = b, s4.3d

o
i=1

N

tissi + si−1dui = c, s4.4d

with b= 1
2 +eVT, c= 1

3 +eTV+2eTTV, and show that the resulting
minimum is always greater thana. fThe primary constraints
s3.4d are justsN=1 andu1=1.g

For constrained minimization, one can use the method of
Lagrange multiplier. Minimizing

F =
1

2o
i=1

N

tiui
2 − l1So

i=1

N

tiui − bD − l2So
i=1

N

tissi + si−1dui − cD
s4.5d

gives

ui = l1 + l2ssi + si−1d. s4.6d

Substituting this back to satisfy constraintss4.3d and s4.4d
determinesl1 andl2:

l1 + l2 = b, s4.7d

l1 + l2 + gl2 = c. s4.8d

The only nontrivial evaluation isoi=1
N tissi +si−1d2=1+g,

where

g = o
i=1

N

ssi
2si−1 − sisi−1

2 d. s4.9d

The minimum of the quadratic form is therefore

F =
1

2o
i=1

N

tifl1 + l2ssi + si−1dg2

=
1

2
fsl1 + l2d2 + gl2

2g

=
1

2
Fb2 +

1

g
sc − bd2G . s4.10d

To minimize F, one must maximizeg. Solving ]g/]si =0
givessi =ssi+1+si−1d /2, which means thatsi is linear ini. The
normalizationsN=1 fixes si = i /N, giving

gmax=
1

3
S1 −

1

N2D . s4.11d

This is indeed a maximum since one can directly verify that
]2g/]si

2=−2ssi+1−si−1d,0. Hence, at any finiteN,

F .
1
2fb2 + 3sc − bd2g = 1

2s 1
2 + eTVd2 + 3

2s2eTTV− 1
6d2

= a + 6eTTV
2 . s4.12d

Thus the minimum of the quadratic form is always higher
than the value required by the correctability condition.
Hence, no real solutions forui are possible ifti are all posi-
tive.

We note that the above proof is independent ofeTV. For
eTV=0, the correctability condition is justeTTV=eVTV. Hence
for symmetric decompositions with positiveti’s, whereeTV
=0 is automatic, we have as a corollary thateTTV can never
equal toeVTV.

V. CORRECTABLE FORWARD PROPAGATORS
AND THEIR CORRECTORS

The last section is the main result of this work. Here, we
show how the correctability criterion can be applied system-
atically to deduce forward correctable second-order propaga-
tors and their minimal correctors.

The proof of noncorrectability is limited to the conven-
tional product form(2.2), which factorizes the propagator
only in terms of operatorsT and V. As shown in the last
section, symmetrically decomposed positive-time-step
propagators cannot be corrected beyond second order be-
causeeTTV cannot be made equal toeVTV. For example, the
second-order propagator

exps 1
2«Tdexps«Vdexps 1

2«Td s5.1d

has t1= t2=1/2, v1=u1=1, s1=1/2, andeTV=0. From Eqs.
s3.10d ands3.11d, we can determine indeed that the two error
coefficients are not equal:
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eTTV= 1
2s 1

2d21 − 1
6 = − 1

24,

eTVT= 1
6 − 1

2s 1
2d1 = − 1

12. s5.2d

A simple way to force them equal is to directly incorporate
either operator[T,fT,Vg] or [V,fT,Vg] in the factorization
process. Since[V,fT,Vg] =s"2/mdoiu=io jÞivsr ijdu2 is just an-
other potential function, Suzuki[24] suggested that one
should keep the operator[V,fT,Vg]. If now we add
1
24«3[V,fT,Vg] to «V in Eq. (5.1), we can change the coeffi-
cient eVTV from −1/12 to −1/24, matching that ofeTTV. The
result is still only a second-order propagator

rTI = exps 1
2«Tdexps«V + 1

24«3
†V,fT,Vg‡dexps 1

2«Td ,

s5.3d

but now has a fourth-order trace. This propagator was first
obtained by Takahashi and Imadaf25,26g by directly com-
puting the trace. It is a remarkable find given how little they
had to work with. This derivation explains, without doing
any trace calculation, why the propagator worked.

The alternative of keeping[T,fT,Vg] would require add-
ing − 1

24«3[T,fT,Vg] to makeeTTV equal toeVTV’s value of
−1/12. This operator is too complicated for practical use, but
in the case of the harmonic oscillator, it can be combined
with the kinetic energy operator:

r2B8 = exps 1
2«T − 1

48«3
†T,fT,Vg‡dexps«Vd

3exps 1
2«T − 1

48«3
†T,fT,Vg‡d . s5.4d

This can also be written in the form of

r2B = exps 1
2«Vdexps«T − 1

24«3
†T,fT,Vg‡dexps 1

2«Vd .

s5.5d

In this case exps 1
2«Vdexps«Tdexps 1

2«Vd has eTTV=1/12 and
eVTV=1/24, and propagatorr2B corresponds to changing
eTTV’s value to match that ofeVTV. The Takahashi-Imada
propagators5.3d can also be written as

rTI8 = exps 1
2«V + 1

48«3
†V,fT,Vg‡dexps«Td

3exps 1
2«V + 1

48«3
†V,fT,Vg‡d , s5.6d

corresponding to changingeVTV’s value to match that ofeTTV.
These are the four fundamental correctable second-order
propagators with a fourth-order trace.

For the computation of the trace, it is unnecessary to
know the corrector explicitly. In other cases, such as sym-
plectic corrector algorithms, one may wish to apply the cor-
rector occasionally to see the working of the corrected
fourth-order propagatorr̃. We will give a detailed derivation
of correctors for propagators(5.3)–(5.6), cumulating in a set
of four minimal correctors. These minimal correctors with
analytical coefficients have not been previously described in
the literature[18–23].

For the Takahashi-Imada propagator, we haveeTTV=eVTV
=e2 with e2=−1/24. From Eq.(2.7), we see that a possible
corrector is C=e2«fT,Vg. This can be constructed in a
straightforward manner as suggested by Wisdomet al. [18].
Since

Bsv1,t1d ; exps«v1Vdexps«t1Tdexps− «v1Vdexps− «t1Td

= exps− v1t1«2fT,Vg − 1
2t1

2v1«3
†T,fT,Vg‡

− 1
2t1v1

2«3
†V,fT,Vg‡ + Os«4dd , s5.7d

by settingv1t1=s1/48d, the following product is a work-
able corrector

Bsv1,t1dBs− v1,− t1d = exps− 1
24«2fT,Vg + Os«4dd .

s5.8d

Note that it is important to have the operatorV beforeT to
generate a negativee2 coefficient. However, without fully
determining bothv1 and t1, this corrector clearly underuti-
lizes Bsv1,t1d. It requires eight operators, which is far from
optimal. We will show below that four is sufficient.

Let H=T+V andG=fT,Vg. SinceHA=H+e2«2fH ,Gg, we
can see from Eq.(2.7) that adding a termc0H to C will not
affect the corrector term«fC,T+Vg, but such a term will
generate unwanted third-order termsc0e2«3[H ,fH ,Gg] from
«fC,HAg and 1

2c0e2«3[H ,fG,Hg] from 1
2«fC,fC,HAgg. To

cancel them, we must add another termc2«2fH ,Gg to the
corrector such thatc2= 1

2c0e2. Thus the corrector can have the
more general form

exps«Cd = expsc0«H + e2«2G + 1
2c0e2«3fH,Ggd + Os«4d

s5.9d

=expsc0«Hdexpse2«2Gd + Os«4d, s5.10d

where the second line follows from the fundamental Baker-
Campbell-Hausdorff formula, expsAdexpsBd=exphA+B
+s1/2dfA,Bg¯j. To exploit the use of the free parameter
c0, we can approximate expsc0«Hd by

expS«
c0

2
VDexps«c0TdexpS«

c0

2
VD

= expSc0«H +
1

12
c0

3«3
†T,fT,Vg‡ +

1

24
c0

3«3
†V,fT,Vg‡D

+ Os«5d, s5.11d

and the term expse2«2Gd by Bsv1,t1d. We can now choose
c0,v1,t1 such thatv1t1=1/24 and thethird-order terms in
Eq. s5.11d exactly cancel the third-order terms in Eq.
s5.7d: 1

2t1
2v1= 1

12c0
3, 1

2t1v1
2= 1

24c0
3. This givesc0=1/s2331/6d,

v1=1/s4Î3d, andt1=1/s2Î3d. The result is a corrector with
six operators:
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S= expS«
c0

2
VDexps«c0TdexpF«Sc0

2
+ v1DVG

3exps«t1Tdexps− «v1Vdexps− «t1Td. s5.12d

Since this corrector has made good use of all the parameters,
it is surprising that one can find an even shorter corrector.
Instead ofBsv1,t1d, consider just

exps«d0Vdexps«d0Td

= expsd0«H − 1
2d0

2fT,Vg + 1
12d0

3«3
†T,fT,Vg‡

− 1
12d0

3«3
†V,fT,Vg‡d + Os«4d. s5.13d

The corrector

STI = expS«
c0

2
VDexps«c0TdexpF«Sc0

2
+ d0DVGexps«d0Td

= exphsc0 + d0d«H + s− 1
2d0

2d«2G

+ 1
2s− 1

2d0
2dsc0 + d0dfH,Gg + 1

12sc0
3 + 4d0

3d«3
†T,fT,Vg‡

+ 1
24sc0

3 + 4d0
3d«3

†V,fT,Vg‡j + Os«4d s5.14d

will have the correct value fore2 if we take d0
2/2=1/24,

fixing d0=s1/2Î3d. The corrector will also be of the form
s5.9d after both commutators have been eliminated by set-
ting c0

3=−4d0
3, giving c0=−1/s21/3Î3d. This is the minimal

corrector for the Takahashi-Imada propagator.
The corrector of the form(5.9) is completely determined

by a single numbere2. Its sign dictates the order of theT and
V operators, and its value fixes their coefficients. For the
alternative propagatorr2B8 , Eq. (5.4), with e2=−1/12, its cor-
rector is of the same form as Eq.(5.14), but now with d0
=1/Î6 andc0=−21/6/Î3.

For positive values ofe2, the corrector is of the form

S= expS«
c0

2
TDexps«c0VdexpF«Sc0

2
+ d0DTGexps«d0Vd

= exphsc0 + d0d«H + s 1
2d0

2d«2G + 1
2s 1

2d0
2dsc0 + d0dfH,Gg

− 1
24sc0

3 + 4d0
3d«3

†T,fT,Vg‡ − 1
12sc0

3 + 4d0
3d«3

†V,fT,Vg‡j
+ Os«4d. s5.15d

Propagatorr2B is dual to theTI propagator withe2=1/24. Its
corrector is of the forms5.15d but with same coefficients
d0=1/s2Î3d and c0=−1/s21/3Î3d. The rTI8 propagators5.6d
with e2=1/12 is dual to r2B8 . Its corrector is of the form
s5.15d with d0=1/Î6 andc0=−21/6/Î3. These compact cor-
rectors are fitting companions to their equally compact
propagators.

VI. CONCLUSIONS

In this work, we proved a fundamental result on the cor-
rectability of forward time step propagators. We show that if
r=e«sT+Vd were to be approximated by the product form
(2.2), then no product form with positive coefficientshtij is
correctable beyond second order. Whereas a conventional
higher-order propagator requires its error terms to vanish, a
correctable propagator only requires its error terms to satisfy
the correctability condition. The latter requirement seemed
far less stringent. A surprising element of this work is that
this is not the case. For symmetric decomposition with posi-
tive htij, the two second-order error coefficients cannot both
vanish because, they can never be equal. The correctability
requirement itself is stringent enough. This proof of noncor-
rectability generalizes the previous work of Sheng[1] and
Suzuki [2].

From knowing correctability requirement, we derived sys-
tematically the four forward correctable second-order propa-
gators and their minimal correctors. These minimal correc-
tors follow from a more general form(5.10) of the corrector
with free parameters. Much of the existing literature on sym-
plectic corrector is rather opaque, concerned only with how
to satisfy “order conditions” numerically[22,23]. This work
suggests that a more analytical approach is possible.

The Takahashi-Imada type of propagators considered here
are unique in that they are the only known second-order,
forward-time-step propagators with a fourth-order trace. If
one is willing to evaluate the potential at least twice, then
with the inclusion of[V,fT,Vg], one can make both error
coefficientseTTV andeVTV vanish[8,9]. The result is a whole
family of positive time step fourth-order propagators[27–30]
with a fourth-order trace. While this class of forward decom-
position algorithms is indispensable for solving time-
irreversible problems[10–14], they are less interesting from
the point of view of calculating the trace. For correctable
propagators, their key attraction is that one can obtain a
higher-order trace without using a higher-order propagator.
Methods and results of this work can be used to study ways
of correcting these fourth-order propagators to higher orders.

Note added in proof.F. Casas has informed me that he
and S. Blanes have also proved the result in Sec. IV using a
different method; see Ref.[31]
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