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The quantum partition function at finite temperature requires computing the trace of the imaginary time
propagator. For numerical and Monte Carlo calculations, the propagator is usually split into its kinetic and
potential parts. A higher-order splitting will result in a higher-order convergent algorithm. At imaginary time,
the kinetic energy propagator is usually the diffusion Green’s function. Since diffusion cannot be simulated
backward in time, the splitting must maintain the positivity of all intermediate time steps. However, since the
trace is invariant under similarity transformations of the propagator, one can use this freedom to “correct” the
split propagator to higher order. This use of similarity transforms classically gives rise to symplectic corrector
algorithms. The split propagator is the symplectic kernel and the similarity transformation is the corrector. This
work proves a generalization of the Sheng-Suzuki theorem: no positive time step propagators with only kinetic
and potential operators can be corrected beyond second order. Second-order forward propagators can have
fourth-order traces only with the inclusion of an additional commutator. We give detailed derivations of four
forward correctable second-order propagators and their minimal correctors.
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[. INTRODUCTION despite myriad of factorization schemes of the fofin3
proposed in the classical symplectic integrator literature
[4-7], none can be used for doing quantum statistical calcu-
lations beyond second order. It is only recently that fourth
Z=Tr(p) = Tr(e?), (1.1) order, all positive-coefficient factorization schemes have
been found8,9] and applied to time-irreversible problems
wherep is imaginary time propagatog=1/(kgT) is the in-  containing the diffusion kerndl10-14. In order to bypass
verse temperature, amti=T+V is the usual Hamiltonian op- the Sheng-Suzuki’s theorem, one must include other opera-
erator. Although specific forms of the kinetic and potential tors in the factorizationi1.3), such as the double commutator
energy operators will not be used in the following, it is use-[V,[T,V]], where[A,B]=AB-BA
ful to keep in mind the many-body case where In computing the quantum partition functia)y only the
=(-h2/2m)%;,,VZ and V=S, _ju(r;;). In numerical or Monte  trace ofp=e" is required. Since the trace is invariant under
Carlo calculations, the imaginary time propagator is first dis-the similarity transformation
cretized as

The quantum partition function requires computing the
trace,

~ 1
e_B(T"'V) = [eE(T+V)]ﬂ’ (1.2) pP= SPS_ ’ (14)
—Ap=— - T+V) one is free to use any sughto computeZ. This is immate-
yvheres AB .,B/n, anq the short time propagateft .rial if p is known exactly. However, if the short-time propa-
is then approximated in various ways. One systematic

. : . ator is only known approximately, then one may use a
method is to decompose, or split, the short-time pr()mg"m]glever choice ofsto further improve the approximation. This
into the product form

is a well-known idea in many areas of physics. For example,

N to calculate the exact quantum many-body ground state using
eV < [] eieTerieV, (1.3 the diffusion Monte Carlo algorithm, one can cho&eg,,
i=1 where ¢y is a known trial function close to the exact ground

_ . _ ) state. This is the idea of “importance sampling” as intro-
with coefficients{t;,v;} determmeq py the requwgd order_of duced by Kaloset al. [15]. Its operator formulation as de-
accuracy. Fo,r (2:1uantum statistical calculations, sinc&riped above has been implemented by GhB) some time
(r'|eeTrycce ' ~N748) s the diffusion kernel, the coeffi- ago. Similar ideas have been used to improve path integrals,
cientt; must be positive in order for it to be simulated or as detailed by Kleinerf17]. If the short-time propagator is
integrated. Ift; were negative, the kernel is unbounded andapproximated by the product ford.3), the error terms can
unnormalizable, and no probabilistic basédonte Carlg be calculated explicitly and eliminated & When imple-
simulation is possible. However, as first proved by Shengmented classically, these are known as symplectic “correc-
[1], and later by Suzuki2], beyond second order, any fac- tor,” or “process” algorithmg18—23. In this context the
torization of the form(1.3) mustcontain some negative co- propagatorp is the kernel algorithm an® is the corrector.
efficients in the seft;,v;}. Goldman and Kapef3] further  SinceSdisappears in the calculation Bf there is no restric-
proved that any factorization of the for(i.3 must contain tion on the form ofS. If Swere also expanded in the product
at least one negative coefficient ftwoth operators. Thus, form (1.3), there is no restriction on the sign of its coeffi-
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cients. This suggests that there may exist a product form S=exfdeC], (2.5
(1.3) of p with only positive coefficients such that its trace is
correct to higher order. This would not be precluded by thewhereC is the to-be-determined corrector, then we have the
existing Sheng-Suzuki theorem. fundamental result
In this work, we show that this is not possible. dfis
approximated by the product fortd.3) with positive coeffi- ’HA: €CH e ¢
cients{t;}, thenp cannot be corrected bg to higher than L L
second order. The proof of this generalizes the Sheng-Suzuki _ L2 =.3
theorem. The corrected propagagocan be fourth order only =Ha+elCHAl+ 2° [CICHAll+ 3° [CICICHA
if additional operators, such 4¥,[T,V]], are used in the 2.6)
splitting of p. By understanding the “correctability” require- '
ment, we can systematically deduce the four fundamental Let us first consider the case where the product f(2r8)
correctable second-order propagators and their correctors. for H, is left-right symmetric, i.e., eithet;=0 and v;
In the following section, we recall some basic results of=vy_js1, tis1=tnoiz1 OF vy=0 andv;=vy, tj=ty_i+1. In this
similarity transforms. Beyond second order, only a speciatase, the propagator is reversipg(s)pa(—g)=1, andHx(e)
class of approximatg satisfying the correctability condition is an even function o& with er,=0. In this case,
can be corrected to higher order. In Sec. Ill, we compute the

explicit form of the error coefficients required by the correct- HA.=H, + Hol+ -

ability criterion. In Sec. IV, we show that this requirement a=Ha+e[CHa

cannot be satisfied for propagators of the product feitrs) =T+V+e(erndT,[T, VI +e,ndV.[T,VI]

with only positive{t;} coefficients. In Sec. V, based on our +e[CT+V]+ - 2.7)

understanding of the correctability restriction, we deduce all
four second-order correctable propagators and their minimal,q one immediately sees that the cho@esC, with C,

correctors. Some conclusions are given in Sec. V. =cn[T,V] would eliminate either second order error term
with cry=erqy or cry=eyty. So, if Hp is constructed such
II. SIMILARITY TRANSFORMS that

AND THE CORRECTABILITY CRITERION

= ) 2.8
Similarity transforms on approximate propagators of the Errv=E&vrv (2.9

product form(1.3) have been studied extensively in the con-then both can be simultaneously eliminated by the corrector.
text of symplectic correctorfl8—22. However, not all use  Thjs is the fundamental correctability requirement for cor-
the language of operators and some are specific to celestigcting a second orda, to fourth order. This observation
mechanics. Here, we recall some elementary results and egan pe generalized to higher order. At higher ordeiswill
tablish the fundamental correctability requirement in the contaye error terms of the forfit, Q] and[V, Q] whereQ; are

tex;_of quantum statistical physics. some higher-order commutator generatedTbgnd V. If H,
inee is of order 2 in &, thenH, can be of order 2+2 only if
SS1=[se ™IS (2.1) Hu's error coefficients fo{T,Q;] and[V,Q;] are equal for

all Q;'s. This fundamental corrector insight is often obscured

it is sufficient to study the similarity transformation of the DY the more general case where odd order errors are allowed.
approximate short-time propagatpx. Let p, approximates Sheng[1] and Suzuki2] independently proved that ng,

€™V in the product form such that of the form (2.2) can have positive coefficients beyond
second order. More precisely, ffy is of the product form
N (2.2) with positivet;’s such thater,=0, then bothe;r, and
pa= 1 eicTerieV = geHa, (2.2)  eyry cannot be zero. We will prove a more general theorem
i=1 that the product form(2.2) with positive t;'s such thatery
i . o =0 cannot becorrectedbeyond second order, i.eerry can
whereH, is the approximate Hamiltonian never equal t@,. From this perspective, the Sheng-Suzuki
B 5 theorem is a special case where the common value for both
Ha=T+V+e(endT,V]) +e(erndT,[T,V]] coefficients is zero.
+e,nIV,[T,V]]) + O(&%) (2.3 In the general case wheeg, # 0, we have
with error coefficientser, erry, ande,ry determined by fac- ’ﬁA: T+V+s(en[T,V]) + e2(ern[T.[T,V]]

torization coefficientdt;,v;}. The transformed propagator is
+eyn[Vi[TVID) +6[C, T+ V] +&%en[C,[T,V]]

A= SpaSt=Setas =SSz gtta (2.9) +262[C,[C, T+ V]]+O(s%). (2.9

where the last equality defines the transformed approximatgince[c;T+c,V, T+V]=(cr—c,)[T,V], the linear term ine
HamiltonianH,. If now we take can be eliminated if we chooge=C,=c;T+c¢,V such that
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(cr—oy) =-ey. (210 eM=1+e(T+V)+e%en[T,V]+eern/T[T,V]]
This is the first-order correctability condition. This means + 3, [V,[T,V]] + }82(T+V)2+ }SseTv{(TJrV)
that with a suitable choice af; andcy, a first-order propa- 2 2

gator can always be corrected to second order. Hence, the

trace of any first-order propagator is always second order. X[T,V]+[T,VI(T+V)} + i83(T+V)3+ <. (3.3
For example, the trace T&*"e?) is second-order despite its 3!
appearance. Matching the first-order terms im gives the primary con-

With the first-order correctability condition satisfied, the straints
remaining commutators in E@2.9) are eitherT,[T,V]] or N N
[V,[T,V]], and can again be corrected by addingQdahe _ ~
term eC,=ecq[T,V]. Thus with 21 =1 and 21 vi=1. (3.4

C=Cy+eCi=cT+cV+ecpn[T,V] (2.1)  To determine the error coefficients, we “tag” a particular
operator in Eq(3.3) whose coefficient containsy,, ery, or

such that(c;-cy)=—ery, we have eyrv and match the same operator’s coefficients in the ex-
_ pansion of Eq.3.2). For example, in the:? terms of Eq.
Ha=T+V+eXern[T,[T, VI +eynfV.[T,VI]) (3.3), the coefficient of the operatd?V is (3 +er,). Equating
+£2[Cy, T+ V] + £2en[Co [T, VI] this to the coefficients oTV from Eq. (3.2) gives
+ 362y [Co, T+ V] + O(? 1 .
28 [ 01[ 0s ]] (8 )1 §+eTVZESUi| (35)
=T+V+ 82(eTTv‘ Cryt %CTeTv)[T,[T,V]] =1
+ e¥(eyry—Cry + Sovery)[V.[T,V]] + O(e9). where we have introduced the variable
(2.12) !
s=2t. (3.6)
j=1

If we now choosecTV:eTTV+%cTeTV to eliminate the error
term [T,[T,V]], then the error ternjV,[T,V]] can vanish

v if This way of computingTV from Eg. (3.2) corresponds to
only i

first picking out aV operator from among all the; terms,
a 1 ) and then combine all thigterms to its left in the exponential
errv=eyry+ 3(eny)”. 213 o generate & operator. Alternatively, the same coefficient

o . . an also be expressed as
This is the general second-order correctability reqwremen? P

for correcting any first-order propagator beyond second or- 1 N
der. The major result of this work is to show that this con- > +ey7= > tiu;, (3.7
dition cannot be satisfied for product decomposition of the i=1

form (2.2) with only positivet; coefficients. where

N
IIl. DETERMINING THE ERROR COEFFICIENTS
U = 2 j. (38)
j=i

To check whether the correctability requirement, Eq.
(2.13, can ever be satisfied by an approximate propagator of hjs way of computingrV corresponds to first picking out a
the product form2.2), we need to determiner, €rry, and T gperator from among all thie terms, and then combine all
eyry in terms of{t;,vi}. From the assumed equality the v; terms to its right in the exponential to generat&/ a
operator. To demonstrate how these variables are to be used,
we can directly prove the equality of Eq&8.5 and (3.7).
First, note thaty=1 andu;=1. Second, since=s-s_;, at
i=1 we must consistently se=0. Similarly, sincev;=u;
with H, given by Eq.(2.2), we can expand both sides and ~Ui+1, We must setiy,;=0. Therefore we have

N

[] elieTevieV = goHa, (3.1
i=1

compare terms order by order in powerseofThe left-hand N N N N
side of Eq.(3.1) can be expanded as 2 sv; = E (U = Uy = 2 (§-S_)u; = E tu.
estlTeavlvestzTeavzv v eetNTeeuNV =1 =1 =1 =1 (39)
N N
=1 +8(2 ti)T+ 8(2 vi>V+ - (3.2 The determination of error coefficients is simplified if we
i=1 i=1 pick operators whose expansion coefficients are easy to cal-

culate. Matching the coefficients of operatdrsV and TVV
and the right-hand side as (note, not the operatoVTV) yields
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11 1 1
6 + Eerv"' errv= Egl S|20i = Ez (52_ 32—1)Ui,

(3.10
N
1 1 1
5 pevenr= Egltiu?. (3.12)

IV. PROVING THE MAIN RESULT

Using the expression fag 1 from Eq.(3.11), the correct-
ability requiremeni2.13 reads

1
—E tu =a, (4.7
2i5
with
a=%(%+erv)2+2—14-errv (4.2

andery, erry given by Egs(3.7) and(3.10, respectively. In

Suzuki's proof 2], he recognizes that in terms of the variable

Vtiu, Eq. (4.1) is a hypersphere and Eg&8.7) and (3.10

are hyperplanes. His proof is based on a geometric dem-

PHYSICAL REVIEW E 69, 046118(2004)

)\1+)\2+g)\2:C. (48)

The only nontrivial evaluation isEiN: ti(s+s_y)?=1+g,
where

N
g= El (s_1-S0).

(4.9
The minimum of the quadratic form is therefore
1 N
F= EE [N+ Nols + 520 ]
i=1
1 2 2
= 5[()\1 +\p)"+0\5]
1 1
=—{b2+—(c—b)2}. (4.10
2 g

To minimize F, one must maximizey. Solving dg/ds=0
givess =(si;1+S-1)/2, which means that is linear ini. The
normalizationsy=1 fixess=i/N, giving

1 1
gmax:§<1_@>- (4-11)

onstration that his hyperplane cannot intersect his hyperiq s indeed a maximum since one can directly verify that

sphere. While this geometric language is very appealing
it is cumbersome when dealing with more than one hyper

plane. We will use a different strategy.
If t; are all positive, then the left-hand side of K4.1) is
a positive-definite quadratic form iw. There would be no

#9105’ =—2(s,1-5-1) <0. Hence, at any finite\,
F > 3[b°+3(c-b)?] = 3(3 + en) + 3(2errv—§)?
(4.12

=a+ 66l

real solutions fow; if the minimum of the qug(_jra_tic formis  Thus the minimum of the quadratic form is always higher
greater thara. Our strategy is therefore to minimize the qua- ihan the value required by the correctability condition.

dratic form subject to constraint8.7) and(3.10),

N
Etiui =b, (43)
i=1
N
(4.4

D ti(s +s_)u=c,
i=1

with b=3+eyr, c=3+ep,+2erm, and show that the resulting
minimum is always greater tham [The primary constraints
(3.4) are justsy=1 andu;=1.]

For constrained minimization, one can use the method of

Lagrange multiplier. Minimizing

LN N N
F= 52 tuZ - M(E tu; - b) - Kz(E ti(s +s-)Ui — C)
i=1 i=1

i=1
(4.5

gives
Ui =N+ NS +S29). (4.6)

Substituting this back to satisfy constrairis3) and (4.4)
determines\; and\:

)\1+)\2:b! (47)

Hence, no real solutions far, are possible it; are all posi-
tive.

We note that the above proof is independenegf. For
ery=0, the correctability condition is jus;ty=eyty. Hence
for symmetric decompositions with positiigs, whereey,
=0 is automatic, we have as a corollary tleat, can never

equal toeyy.

V. CORRECTABLE FORWARD PROPAGATORS
AND THEIR CORRECTORS

The last section is the main result of this work. Here, we
how how the correctability criterion can be applied system-
atically to deduce forward correctable second-order propaga-
tors and their minimal correctors.

The proof of noncorrectability is limited to the conven-
tional product form(2.2), which factorizes the propagator
only in terms of operator§ and V. As shown in the last
section, symmetrically decomposed positive-time-step
propagators cannot be corrected beyond second order be-
causeery cannot be made equal &y For example, the
second-order propagator

exp(3eT)exp(eV)exp(3&T) (5.1)

hast,=t,=1/2, v,=u;=1, $,=1/2, ande;,=0. From Egs.
(3.10 and(3.11), we can determine indeed that the two error
coefficients are not equal:
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eTVT:%_%(%) :_%2' (5.2)

A simple way to force them equal is to directly incorporate

either operatofT,[T,V]] or [V,[T,V]] in the factorization
process. SincgV, [T, V]| =(#*/m)Z| V2, v (r;)[? is just an-
other potential function, Suzukj24] suggested that one
should keep the operatofV,[T,V]]. If now we add
2—1483[V,[T,V]] to eV in Eq. (5.1), we can change the coeffi-
cienteyry from —1/12 to —1/24, matching that efr,. The
result is still only a second-order propagator

pri=expl3eT)explsV + £e°[V.[T.V]])expl 26T),
(5.3

PHYSICAL REVIEW E 69, 046118(2004)

For the Takahashi-Imada propagator, we heyg=e v
=e, with e,=—1/24. From Eq(2.7), we see that a possible
corrector is C=e,e[T,V]. This can be constructed in a
straightforward manner as suggested by Wisdzral. [18].
Since

B(vy,t)) = explev,V)expet, T)exp(- evV)exp(— &t;T)
= expl(- vty T,V] - 2830, T,[T, V]

- 2,023 V,[T,VI] + O(%), (5.7)

by settingv,t;=(1/48), the following product is a work-
able corrector

B(Ul,tl)B(_ U1,~ tl) = exd_ 2%182[T,V] + 0(84)) .
(5.8)

but now has a fourth-order trace. This propagator was first o

obtained by Takahashi and |ma{%,za by direct]y com- Note that it is important to have the OperamrbeforeT to
puting the trace. It is a remarkable find given how little they génerate a negative, coefficient. However, without fully
had to work with. This derivation explains, without doing determining bothv; andt,, this corrector clearly underuti-

any trace calculation, why the propagator worked.
The alternative of keepinfT,[T,V]] would require add-

ing —2—1483[T,[T,V]] to makeerry equal toe,ys value of

lizes B(vq,t4). It requires eight operators, which is far from
optimal. We will show below that four is sufficient.
LetH=T+V andG=[T,V]. SinceH,=H+e,cqH,G], we

~1/12. This operator is too complicated for practical use, buf@n see from Eq2.7) that adding a terngoH to C will not
in the case of the harmonic oscillator, it can be combineddffect the corrector terna[C,T+V], but such a term will

with the kinetic energy operator:

pie = exp 36T — =3[ T,[T,VI])exp(sV)

xexp(3eT - =3[ T,[T,V]]). (5.4)
This can also be written in the form of
pas = expl 3eV)exp(eT - 2&3[T,[T,VI])exp(3sV).
(5.5

In this case exgsVlexpsT)exd3sV) haserr,=1/12 and
eyrv=1/24, and propagatop,g corresponds to changing
erry's value to match that oé,1,. The Takahashi-Imada
propagator(5.3) can also be written as

p1’_| = eXF(%SV + 4—1883[V,[T,V:|])EX|’18T)
xexp(3eV + =3[ V,[T,V]]), (5.6

corresponding to changirey,s value to match that odr,.

These are the four fundamental correctable second-order

propagators with a fourth-order trace.

For the computation of the trace, it is unnecessary to

generate unwanted third-order term@,s3[H,[H,G]] from
e[C,Hal and 3coe,e3H,[G,H]] from 3&[C,[C,HAl]. To
cancel them, we must add another tecge’H,G] to the

corrector such that,= %coez. Thus the corrector can have the
more general form

exp(eC) = explcoeH + €82G + 2coe,ed[H, G]) + O(e?)
(5.9

=exp(coeH)exp(ee?G) + O(e%), (5.10

where the second line follows from the fundamental Baker-
Campbell-Hausdorff  formula, exf)exp(B)=expA+B

+(1/2[A,B]---}. To exploit the use of the free parameter
Co, We can approximate exgeH) by

C C
exp(aE()V) exp(acJ)exp(aEOV)

1 1
= exp(cosH + 1—2c383[T,[T,V]] + Zlcgé[v, [T,V]])

+ 0(85), (511)

know the corrector explicitly. In other cases, such as sym-
plectic corrector algorithms, one may wish to apply the cor-

2
rector occasionally to see the working of the corrected”md the term ex@,e°G) by B(vy,ty). We can now choose

fourth-order propagatdgs. We will give a detailed derivation
of correctors for propagator$.3—5.6), cumulating in a set

of four minimal correctors. These minimal correctors with (5.7):

Co,U1,1t; such thatv4t;=1/24 and thethird-order terms in

Eq. (5.11) exactly cancel the third-order terms in Eqg.

501=15C5, stwi=5,ca. This givescy=1/(2x 319),

analytical coefficients have not been previously described im1=1/(4y3), andt,=1/(2y3). The result is a corrector with

the literature[18—-23.

Six operators:
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Co Co VI. CONCLUSIONS
S=exp eV |explecyT)exp | — +vq |V )
2 2 In this work, we proved a fundamental result on the cor-

rectability of forward time step propagators. We show that if
X - - . . ;
expletyT)exp(= sv;V)exp(= ety T) (512 p=e™V) were to be approximated by the product form

Since this corrector has made good use of all the parameter&-2), then no product form with positive coefficienfs} is
it is surprising that one can find an even shorter correctorcorrectable beyond second order. Whereas a conventional

Instead ofB(v;,t,), consider just higher-order propagator requires its error terms to vanish, a
correctable propagator only requires its error terms to satisfy
expedoV)exp(ed,T) the correctability condition. The latter requirement seemed
_ 10 133 far less stringent. A surprising element of this work is that
= exp(doeH - 33T, V] + 553 [T, [T, V]] this is not the case. For symmetric decomposition with posi-
_ 1;2 dgs3[v, [T,V]]) +0(e?). (5.13 tive_{ti}, the two second-order error coefficients cannot bth
vanish because, they can never be equal. The correctability
The corrector requirement itself is stringent enough. This proof of noncor-
rectability generalizes the previous work of Shgdg and
Co Co Suzuki[2].
Sn=exp e,V ]explecoT)exp ef 2 +do |V |expledoT) From knowing correctability requirement, we derived sys-
tematically the four forward correctable second-order propa-
= exp{(co+d0)sH + (— %dé)szG gators and their minimal correctors. These minimal correc-

10 1. 1,3 3 tors follow from a more general forrf5.10 of the corrector
+5(= 309 (co+ do)[H.G] + 55(c5 + 4 T[T, VI] with free parameters. Much of the existing literature on sym-
+ 234(034, 4dg)83[v,['r,v]]} +0(&% (5.14) plectic corrector is rather opaque, concerned only with how
to satisfy “order conditions” numericallj22,23. This work
will have the correct value foe, if we take dS/ 2=1/24, suggests that a more analytical approach is possible.
fixing d0:(1/2\s’§). The corrector will also be of the form The Takahashi-Imada type of propagators considered here
(5.9) after both commutators have been eliminated by setare unique in that they are the only known second-order,
ting CS:—4d3, giving co:_l/(21/3\s§)_ This is the minimal forward-time-step propagators with a fourth-order trace. If
corrector for the Takahashi-lmada propagator. one is willing to evaluate the potential at least twice, then
The corrector of the forngs.9) is completely determined With the inclusion of[V,[T,V]], one can make both error
by a single numbee,. Its sign dictates the order of tfieand  coefficientserr, andeyy vanish[8,9]. The result is a whole
V operators, and its value fixes their coefficients. For thdamily of positive time step fourth-order propagat{23—3Q
alternative propagatqryg, Eq.(5.4), with e,=-1/12, its cor- with a fourth-order trace. While this class of forward decom-
rector is of the same form as E(p.14), but now withd, position algorithms is indispensable for solving time-
=1/\6 andcy=-216/ V3. irreversible problem$§10-14, they are less interesting from
For positive values 0&,, the corrector is of the form the point of view of calculating the trace. For correctable
propagators, their key attraction is that one can obtain a

Co Co higher-order trace without using a higher-order propagator.
S=ex SET expecoV)expl & P +do | T |exp(edoV) Methods and results of this work can be used to study ways
of correcting these fourth-order propagators to higher orders.
= exp{(Co+ do)eH + (302)62G + 2(3d2) (co + do)[H, G] Note added in prooff. Casas has informed me that he
1.3 3 1,3 3 and S. Blanes have also proved the result in Sec. IV using a
= 2a(C3 + 4 T[T, VI - 35(c3 + 4TV, [T.VIN} different method; see Ref31]
it
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